
Audio Engineering Society

Convention Paper
Presented at the 125th Convention

2008 October 2–5 San Francisco, CA, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

File System Tricks for Audio Production

Michael Hlatky1, Sebastian Heise1, and Jörn Loviscach1

1Hochschule Bremen (University of Applied Sciences), 28199 Bremen, Germany

Correspondence should be addressed to Jörn Loviscach (joern.loviscach@hs-bremen.de)

ABSTRACT
Not every file presented by a computer operating system needs to be an actual stream of independent
bits. We demonstrate that different types of virtual files and folders including so-called “Filesystems in
Userspace” (FUSE) allow streamlining audio content management with relatively little additional complexity.
For instance, an off-the-shelf database system may present a distributed sound library through (seemingly)
standard files in a project-specific hierarchy with no physical copying of the data involved. Regions of audio
files may be represented as separate files; audio effect plug-ins may be displayed as collections of folders
for on-demand processing while files are read. We address differences between operating systems, available
implementations, and lessons learned when applying such techniques.

1. INTRODUCTION
In general terms, a file system can be considered
a special-purpose database which usually organizes
physical data on a local storage device for saving,
hierarchical organization, manipulation, navigation,
access and retrieval. Furthermore, file systems can
provide access to physical data on a remote file
server by acting as client for a network protocol.
However, file systems need not make use of a stor-
age device at all. A file system can be used to orga-
nize and represent access to any data or information,
whether it be stored or dynamically generated.

Standard audio editing and multimedia authoring
software reads and writes data via files stored on
local or remote hard disks. Content management
operate on these files. Physically copying a file to in-
corporate it into a project is often disadvantageous:
It takes time, consumes disk space and—which re-
mains the vexing part in our age of terabyte disks—
makes it hard to keep a sound library in a consistent
state, since multiple copies of a single file are hard
to track. A user may edit a copy of the file and
never update all other copies, let alone change the
file name of the edited copy.



Hlatky et al. File System Tricks

Sophisticated asset management systems can be em-
ployed to address this issue. However, a range of
techniques provided by current computer file sys-
tems also alleviate this situation. We survey these
techniques, which are underrated and underused in
audio production, and provide practical application
examples. To this end, we built and evaluated a
range of software prototypes.

Section 2 discusses file links such as “.lnk” files used
by Microsoft Windows and symbolic links used by
Unix-based systems such as Mac OS X, also to be
found in Microsoft Windows Vista. “Smart Fold-
ers” in Mac OS X and “Search Folders” in Win-
dows Vista represent stored file queries, which are
addressed in Section 3. A “Filesystem in Userspace”
(FUSE) is the most complex and versatile technique,
to be dealt with in Section 4. Here, application soft-
ware is presented with a standard file system hierar-
chy; behind the scenes, however, every access to the
file system is mapped to routines freely definable by
the developer.

2. LINKS
Links allow attaching different addresses to a sin-
gle block of data. This can be employed to create
shortcuts or temporary collections.

2.1. Introduction
File systems typically are hierarchically structured,
using directories which can contain files as well as
sub-directories. The most common local file sys-
tems are HFS Plus on computers running Apple
Mac OS X, NTFS on computers running Microsoft
Windows, and Ext2 and Ext3 on computers running
Linux. Though aged, Microsoft’s FAT32 file system
is understood by every modern operating system and
thus can serve as an exchange medium. However, it
limits the maximum file size to four gigabytes, which
renders it almost useless for media production.

The resolution of a file name to a physical location on
the storage device is usually accomplished through
a table which for every file points to the storage al-
located on the disk. Depending on the file system’s
type, this table may also contain additional informa-
tion, such as access rights, or it may point to addi-
tional files containing further metadata (inodes).

The name associated with a regular file is simply
a label that directs the operating system to a spe-
cific stream of bits. Therefore it is called a hard

link. The same stream of bits on the disk may be
referenced to by several hard links, that is: It may
seemingly appear with different names and/or un-
der different paths. However, a hard link can only
point to a physical position within one partition [9].
More than one hard link to a directory is not allowed
in most operating systems, preventing endless recur-
sions such as a hard link inside a directory pointing
to the directory itself. A notable exception, however,
is Mac OS X 10.5.

A soft link (also known as symbolic link, symlink),
overcomes these limitations in that it is an additional
file or inode, containing the linked-to file’s name and
path, therefore allowing spanning over different par-
titions or file systems. Furthermore, soft links also
allow multiple links to directories.

In contrast to hard links, soft links can be broken by
moving, renaming or deleting the linked-to file, since
the soft link does not point to a physical storage
location but only refers to a path and a name. In
Apple Mac OS X this is optionally overcome with
the help of alias files. An alias is a small file that
represents another object in a file system through its
“fingerprint,” stored in the alias file’s resource fork.
If the original file was moved within the file system,
and an open command is performed on the alias, the
“Alias Manager” tries to locate the file [2].

On Microsoft Windows systems beginning with Win-
dows 2000, an NTFS Junction Point can be used in
a similar way to a Unix soft link, with the limita-
tion that it can only link to a folder within the same
partition [26]. To allow compatibility to Unix-like
operating systems, NTFS symbolic links were intro-
duced with Windows Vista, which allow pointing to
point to local as well as remote files [22].

In addition to these two implementations of soft
links, even older versions of the Microsoft Windows
operating system support .lnk files. These are short
cuts that correspond to the alias files and folders
of Mac OS X. Genuine soft links are automatically
resolved by the file system, so that any software ac-
cessing a soft link will see the target file instead.
Windows’ .lnk shortcuts, however, are treated as
regular files. Thus, application software developers
have to read and open the reference specified in a
.lnk shortcut. Another difference is that .lnk short-
cuts can only refer to a destination via an absolute

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 2 of 10



Hlatky et al. File System Tricks

path, whereas soft links also allow a relative path
declaration, rendering soft links more portable. If
the linked-to file of a shortcut is moved or renamed,
the Windows IShellLink Interface tries to relocate
it through the distributed link tracking service or
standard search methods [21].

2.2. Applications. Lessons Learned
Links can for instance be applied to collect search re-
sults in a folder or to virtually collate the files used
in a project. When building software that generates
links, we quickly noticed, however, that virtual fold-
ers and FUSE systems can handle such applications
much more elegantly, see Sections 3 and 4. Creating
hundreds of .lnk files to display a search result is a
rather clumsy operation, in particular as these .lnk
files have to be deleted at some later point.

Links cannot only be used to quickly open files, but
also to save files. To this end, one can create a short
cut or a symbolic link to a directory. For instance,
in response to the query of the user where to place a
specific file he or she created, a database application
may use this mechanism to present a ready-to-use
collection of appropriate folders to upload the file
to.

On Apple Mac OS X and Microsoft Windows op-
erating systems, it is advisable to employ alias files
and .lnk short cuts to provide access to data that
stems from multiple locations, as this is the most
robust solution: The files that are being linked to
can be renamed or moved within the local system,
but file access is still guaranteed. This solution has
the drawback, however, that the links will only work
within the operating systems in which they have
been generated. A project folder containing links to
several media assets distributed on several file sys-
tems is therefore platform dependent. Furthermore,
the application software must be capable of resolving
the original files. The developer of the application
software has to take this into account, even though
the change needed may be as small as setting the
DereferenceLinks flag for the standard Windows file
dialog.

In a heterogeneous production environment, a plat-
form independent project folder containing genuine
soft links will work in principle with both Microsoft
Windows Vista and Apple Mac OS X, if supported
by appropriate files system drivers. Nonetheless,

this has the drawback that the links will break if
the original files are moved or renamed. Further-
more, manually creating genuine soft links requires
command-line operations or extensions to the stan-
dard graphical user interfaces: Apple Finder and Mi-
crosoft Explorer.

A shared project folder containing hard links to dif-
ferent files will work with every operating system,
however is limited in that the linked-to files may only
be located within the same disk partition. Further-
more, again the creation of such links is not readily
supported by the standard graphical interfaces.

3. VIRTUAL FOLDERS
A virtual folder is understood to be a folder pre-
sented by an operating system that contains data
which are located in different places. These data
typically consist of search results, so that this tech-
nique can readily be applied to Music Information
Retrieval.

3.1. Introduction
Virtual folders are often referred to as “stored
queries.” The operating system executes these
queries on the fly when the folder is opened. On
accessing a file presented via a virtual folder, an ap-
plication will automatically receive the true path of
the file from the operating system.

By applying custom tags through a “Spotlight Meta-
data Importer” or through the “Windows Prop-
erty System,” one can achieve similar results as
with links. Whereas links have to be created and
deleted like standard files, stored queries are com-
pletely dynamic and will automatically be updated
when files are added, deleted or renamed in the tar-
get directories. This advantage comes at the price
of a more advanced software development and of
database queries that are executed whenever the
stored query is accessed.

On Mac OS X one can tag all files related to a certain
project which are to be accessed from one folder, but
not physically copied, with a unique Spotlight com-
ment (for instance through a hash function on the
project’s name). One could then create a “Smart
Folder” [3], setting the folder’s query to the tag as-
signed beforehand. The same approach can be ap-
plied with tags and “Search Folders” under Win-
dows Vista. In both operating systems, the folder

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 3 of 10



Hlatky et al. File System Tricks

will then appear in the defined position within the
file system, seemingly containing all files that carry
the right tag. Basically, Smart Folders and Search
Folders are XML documents instructing the search
engine what and where to search for. The query may
include properties such as sampling rate, bit depth,
and the number of channels.

3.2. Applications
To demonstrate how virtual folders could be lever-
aged by audio production software, we extended Ap-
ple Spotlight by a proprietary property: the zero-
crossing rate (ZCR) of WAV audio files. This enables
the user to create virtual folders based on the values
of this feature, see Figure 1. The feature extrac-
tion is executed in the background by the indexing
process that is part of Spotlight.

Fig. 1: A proprietary property can be employed in
queries (upper left) to create virtual folders (lower
right).

There is no limit to the number and the types of
features to use; one can also form boolean expres-
sions that take the values of different features into
account or comprise additional properties such as bit
depth or last access date. Features may be of low
level such as the zero-crossing rate or they may be of
high level such as music genres, in which case they
can be represented through character strings.

3.3. Lessons Learned
In a homogeneous production environment, virtual
folders work very well. One cannot, however, use
a virtual folder created in Mac OS X on Windows

Vista and vice versa. To the other operating sys-
tem, they show up as XML documents defining a
query. Another issue—even with a single operating
system—is that the user cannot save files to virtual
folders.

4. FILESYSTEMS IN USER SPACE
Representing data through virtual file systems has a
long tradition in the Unix world. In audio produc-
tion, the possibilities range from version control to
batch processing.

4.1. Introduction
In 1984, Tom J. Killian created the first implementa-
tion of a process file system [18]. This software maps
data about the processes running on a computer to
a file system hierarchy. As this file system does not
correspond to data on a disk, it is called a virtual
file system. Further development [17] in virtual file
systems led to SUN’s VFS in 1985, which allowed
Unix system calls to transparently access local UFS
and remote NFS file systems.

File systems are among the most complicated items
in computer technology, as one must have a deep un-
derstanding of the operating system’s kernel to de-
velop a file system. This is overcome with “Filesys-
tems in Userspace” [15], kernel modules or drivers
available for many operating systems. FUSE al-
lows developers to create file systems without en-
tering kernel space, as the file system code runs in
user space, communicating only with the FUSE ker-
nel module. FUSE was officially included in the
2.6.14 Linux kernel, rendering obsolete other imple-
mentations of userland file system drivers, such as
the Linux Userland Filesystem (LUFS). FUSE was
recently ported to Mac OS X by Google, yielding
MacFUSE [20]. There are various attempts to port
FUSE to Microsoft Windows [1, 13, 14, 34, 37, 38].

Existing FUSE applications that are interesting in
an audio production environment comprise Twisted-
FLAC [32], a FUSE file system for Mac OS X that
converts FLAC audio files to the WAV format on
the fly when read and vice versa when written, and
MP3FS [10], a read-only FUSE file system that con-
verts FLAC audio files to MP3 on the fly when read.
Furthermore, there are various FUSE file system im-
plementations that create hierarchical folder struc-
tures containing MP3 files based on their ID3 tags,
for instance TagsFS [31] and MusicMeshFS [23].

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 4 of 10



Hlatky et al. File System Tricks

In addition, many applications of FUSE support ver-
sioning, which can immediately be applied to con-
tent management, thus relieving non-expert users
from details otherwise exposed by typical asset
management systems. Examples of versioning file
systems using the FUSE kernel module are Way-
backFS [36] and Copy-FS [11]. In addition, it is
possible to mount SUN’s ZFS [25] file system via
FUSE [39], which supports versioning.

4.2. Applications
Whereas FUSE systems can be employed for simi-
lar applications as the links described in Section 2,
they support far more advanced applications. We
demonstrate four of them.

First, audio files may contain separate regions, indi-
cated by markers. In the common RIFF file formats
such as WAV and AIFF the file is organized in differ-
ent chunks that can store optional data. For instance
the format chunk fmt chunk provides information
about sampling rate and coding format. The cue
chunk can be used to store cue points, defined by a
sample offset. Through the playlist chunk plst, cue
points can be set to in- and out-points, defining a
region, which also can be assigned a certain name in
the label chunk labl.

Standard audio editing software such as Sony Sound
Forge [28] can define RIFF cue points, link them to
different regions, and assign names to them. In our
prototype, every region in a RIFF file is represented
by a separate (virtual) file whose name equals the
region’s label. This facilitates for instance working
with snippets of a speech of 90 minutes’ length. If
the regions are changed in the audio editing software,
this is immediately reflected in the file system. The
standard file browsers require, however, a refresh.

As can be seen in Figure 2, this FUSE application
creates a new folder in the same hierarchy as the
edited wave file, denoted with the file’s name and
a “regions” extension. This folder will then contain
the regions as (virtual) files. This prototype was
developed in C# based on the Dokan Library [13]
with our own .NET wrapper. It runs on Microsoft
Windows.

Second, we built a prototype that applies basic edit-
ing functions to audio files when read from a folder,
for instance normalization, phase shift, low cut, gain
adjustment, convolution with a given audio file, or

file

file.

regions

file.wav

file.region_1.wav file.region_2.wav file.region_3.wav

Fig. 2: The WAV region file system maps regions
to virtual WAV files.

adding fades. We called this FUSE application
“batch folders,” indicating that it can easily be used
to process a huge amount of audio data in a conve-
nient way. If an audio file is read—which includes
copying as well as playback—the processing is ap-
plied transparently to the reading software. This
method could be called lazy batch processing. It
may be helpful if some files of a collection have to
be subjected to processing but the precise set is not
known in advance.

The functionality of batch folders is shown in Fig-
ure 3. If a folder is created within the batch file
system, the folder’s name defines the processing to
be applied. To this end, we compiled a list of key-
words. The hierarchy of nested folders is analyzed
during file access, granting the generation of pro-
cessing chains. Folders can also be nested, so that
an audio file can for instance first be normalized,
then attenuated by 6 dB, faded in over one second
and faded out over one second. In a chains, the pro-
cessing defined by the topmost folder will be applied
first, thus in the sequence as one would read (and
create) the folders.

The prototype was again developed in C# using the
Dokan Library [13]. It creates a background folder
for temporal storage of the files.

Third, we built a prototype that represents the pre-
sets of VST 2 audio effect plug-ins as nestable fold-
ers, see Figure 4. The user can drag (virtual) copies
of audio files into such folders. When these copies

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 5 of 10



Hlatky et al. File System Tricks

Audio File

Copy Audio File

to Effect Folder

Process During Reading

from Effect FolderAnalysis

Gain Adj

Fade Out

Fade In Audio File

Chained Processing

Normalize Audio File

Fig. 3: The audio file is processed while being
read from the designated processing folder. Com-
plex batch processing jobs can be applied by nesting
different folders.

are read, the effects are executed in real time. This
allows building a library of non-destructively edited
sounds: When the original file is edited, the copies
in the effect file system change as well. In addition,
VST audio effects can be used with any software.
This approach can again be thought of as lazy batch
processing.

Reverb

preset1.fxp preset2.fxp

Preset1 Preset2Audio File

   Copy

 Audio File

to Effect

 Folder

Process During Reading

from Preset Folder

Audio File

Fig. 4: The VST file system subjects audio files to
effect plug-ins during reading.

The software prototype scans the system for avail-
able VST audio effect plug-ins and creates a distinct
folder for every discovered effect. The prototype al-
lows creating sub-folders within the effect folders for
storage of the plug-ins’ preset files. These are loaded
if a file is copied to that distinct folder. If a file is

copied to the effect folder, the plug-in’s default set-
tings will be used for processing.

The VST processing is based on the BASS Audio
framework [33], in particular on the VST host con-
tained therein. We developed a proprietary .NET
wrapper for the BASS Audio framework. The vir-
tual file system was again developed using the Dokan
Library [13].

The VST file system works differently from the batch
folder file system introduced above: A VST plug-in
is only passed one sample block at a time, which
prohibits processing tasks like normalization or fade-
outs. In addition, the behavior of the VST file sys-
tem is markedly different from software such as Au-
tomator [4] in Mac OS X, which also supports pro-
cessing of audio files dragged into a specific folder.
In Automator, however, the processed files are no
longer connected to the originals; and the process-
ing commences immediately and is not postponed
until playback. Furthermore, Automator provides
only limited audio file editing functionality such as
adding fades, trimming, resampling, and basic audio
level compression presets.

Fourth, we addressed the lack of platform-
independent virtual folders. As mentioned in Sec-
tion 3, a Search Folder on Windows Vista or a Smart
Folder on Mac OS X will not be readable from an-
other machine with a different operating system.
Software manufacturers have undertaken some steps
to liberate the operating system’s search engine: For
instance, SearchLight [16], after installation on the
Mac file server, provides a Web interface which lets
the user execute Spotlight searches from another ma-
chine, providing the query results in the browser
window. However, the user must first download the
found files to the local machine before he or she can
use them in a further application.

Our prototype is based on MySQLFS [24], a FUSE
implementation of a database file system, which
stores data, inodes and their connections in three
simple tables. Data are stored as binary large ob-
jects (BLOBs), each of 4 kByte size in one table; the
second table, denoted “tree,” holds the hierarchy of
files and folders; the third table holds data usually
to be found in a file’s inode, such as the date of last
access.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 6 of 10



Hlatky et al. File System Tricks

With relatively little effort, it was possible to mod-
ify the original MySQLFS source code on a De-
bian Linux machine in such a way that it resembled
the functionality of a “Search Folder.” We added
a new field to the “tree” table, named “tag,” see
Table 1. Furthermore, on initialization two fold-
ers named “all” and “search” are created. The
MySQLFS source code is modified in such a way
that on creating a folder inside the “search” direc-
tory, a MySQL query is performed in the database,
searching for project tags of files stored within the
“all” directory matching the new folder’s name. A
new (virtual, since we are dealing with a FUSE sys-
tem) inode is then created in the database for every
matching file. The inode represents a (virtual) hard
link to the file in the newly created folder with no
physical copying of data, see Figure 5. The file sys-
tem can be shared via a standard network protocol,
for instance SMB [27]; every remote machine can
execute queries by simply creating folders.

tree
inode parent name tag

1 /
2 1 all
3 1 search
4 2 1.wav a
5 2 2.wav a, b
6 2 3.wav b
7 2 4.wav a, b, c
8 3 a
9 3 b

10 3 c
11 8 1.wav
12 8 2.wav
13 8 4.wav
14 9 2.wav
15 9 3.wav
16 9 4.wav
17 10 4.wav

Table 1: The table “tree” represents the file system
displayed in Figure 5. Four files in the “all” directory
are assigned by tags to three different projects. The
project folders in the search directory mirror all files
belonging to a specific project.

/

all search

1.wav

2.wav

3.wav

4.wav

4.wav

1.wav

2.wav 3.wav

4.wav

2.wav

4.wav

1

2

5

3

4

a c

17

12

11 14

15

16

9

7

13

108

6

b

Fig. 5: An exemplary file system: Four audio files
that belong to three different projects are stored in
the database. The creation of new folders within
the search folder triggers a database query to fill the
folders with virtual copies of the data.

4.3. Lessons Learned
The RIFF file region file system can be put to good
use whenever one needs to work with recordings of
long durations. To fetch snippets from a long record-
ing into digital audio workstation software, one does
not need to load the complete file, search for the
part of interest and crop the file to an appropriate
length. Furthermore, the snippets of interest need
not be stored individually in the file system, which
would imply storing partial duplicates of recordings
in the file system.

The batch folder file system allows a very quick and
convenient access to basic audio processing tasks.
The file system interface enables streamlining these
functionalities, as the interface is common and well
understood. Furthermore, the possibility of allowing
VST effect plug-in processing in folders frees even
more advanced audio processing tasks from desig-
nated audio plug-in hosts, rendering these effects
more accessible.

The tweaked MySQLFS resembles the “stored
queries” folder’s functionality usually found in mod-
ern operating systems and provides its functionality

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 7 of 10



Hlatky et al. File System Tricks

in a heterogeneous environment, where for instance
Mac OS X and Windows Vista machines are net-
worked, each system providing digital audio work-
station software that only runs within that specific
operating system. Production environments like this
are to be found in many studios, making it extremely
difficult to deploy the search functionalities provided
by the audio file server’s operating system.

The SMB network protocol used to mount the mod-
ified MySQLFS on the networked machines is un-
derstood by every modern operating system and is
widely used in heterogeneous environments. How-
ever, the prototype has the drawback of providing
only one tenth of the data throughput of regular
networked file systems. This is due to the data be-
ing stored as BLOBs. Future work will address the
storage of the data in a regular file system, limiting
the use of the database to search.

We plan to include versioning functionality to the
file system, liberating the user from standard file
backups. We also plan to employ methods of music
information retrieval (MIR) [19] in search for au-
dio assets. Furthermore, a file system presented via
FUSE does not have any limits in where its data may
stem from. For instance, an existing application of
FUSE provides YouTube videos [35] as seemingly lo-
cal data sources show that there is virtually no limit
to what can be mapped to file systems. One could
imagine a huge distributed database of audio files
that are presented via a FUSE system, always at the
appropriate sampling rate and bit depth, structured
in folders according to which project they belong to.
Non-destructive editing and versioning would also
be taken care of by the file system.

All of this functionality could be available on every
operating system. We had to learn, however, that
the available FUSE implementations for Microsoft
Windows systems are still far from a stable state.
In contrast, the implementations for Linux and Mac
OS X work reliably, which is also indicated by the
number of existing applications.

In principle, FUSE systems even allow the system to
change the content of a file that is currently open.
When doing so, a FUSE system may ignore file locks
and even keep the last access time unchanged. This
could for instance be applied to let a second audio
engineer enhance an audio file which is already in

use in a mix; the edits are immediately reflected in
the mix. This tends, however, to raise compatibil-
ity issues with application software. Apple Logic [6]
and Digidesign ProTools [12] preload audio files into
RAM and are not aware of changes done to an open
file on the disk. In contrast, Sony Vegas [29] up-
dates a changed file within a project if the file was
changed within Sony Sound Forge [28], Sony’s wave
file editor. By locking the file, Vegas does not allow
modification to a file in an open project from other
applications such as Audacity [7]. With a FUSE
system, this restriction can be cracked open.

5. CONCLUSION
In homogeneous production environments where
only one operating system is deployed on all com-
puters, the operating system’s native file system pro-
vides the user with useful tools for workflow im-
provement. In a heterogeneous environment, where
all networked machines work with a central data
pool that has to be kept in a consistent state, the op-
eration systems’ file system capabilities swiftly come
to an end.

Networked Content Management Systems for media
assets [5, 8, 30] are widely available on the market
today, but are costly, which limits their usage by
smaller studios. Relatively inexpensive Storage Area
Network (SAN) solutions provide at least a uniform
data storage pool, which can be accessed from every
networked machine in a heterogeneous production
environment. SANs, however, only address part of
the problems arising in asset management.

In order to keep a project’s assets in a consistent
state, files that belong to more than one project
still have to be copied physically to a designated
folder, resulting in multiple copies of the file, spread
over the entire production network. In a heteroge-
neous production environment, this problem cannot
be solved easily with alias files or shortcuts, as these
will only be understood from the operating system
they were created in. Genuine soft links would solve
this problem, at the cost of having to leave every
original file at its original location and with the same
file name. Furthermore, genuine soft links cannot be
generated by the operating systems’ graphical user
interfaces, which renders them less accessible to non-
expert users.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 8 of 10



Hlatky et al. File System Tricks

Virtual folders can solve many problems much more
elegantly than links can. In particular, they do not
require that links are created, modified, and deleted.
The operating systems’ functions for virtual folders
are, however, again limited to the corresponding op-
erating system.

FUSE systems, as demonstrated in this paper, have
the broadest ability to provide clean and cross-
platform solutions to data management issues. In
addition, they can be applied to uncommon but in-
tuitive applications such as lazy batch processing,
which can be put to good use in audio production
environments. FUSE systems can also be applied to
shield the non-expert user from file-system specific
tasks such as backups, and provide the user with
a familiar interface—a production environment that
advances creativity.

6. ACKNOWLEDGMENTS
The authors thank Kristian Gohlke for his assistance
with some of the prototypes.

7. REFERENCES

[1] Danilo Almeida. FIFS: a framework for im-
plementing user-mode file systems in Windows
NT. In WINSYM’99: Proceedings of the 3rd
conference on USENIX Windows NT Sympo-
sium, pages 13–24, 1999.

[2] Apple. Alias Manager reference. http:
//developer.apple.com/documentation/
Carbon/Reference/Alias_Manager/
Reference/reference.html, accessed 2008-
07-10.

[3] Apple. Working with Spotlight. http:
//developer.apple.com/macosx/spotlight.
html, accessed 2008-07-10.

[4] Apple. Automator. http://www.apple.com/
de/macosx/features/300.html#automator,
accessed 2008-07-23.

[5] Apple. Final Cut Server. http://www.apple.
com/de/finalcutserver/, accessed 2008-07-
23.

[6] Apple. Logic. http://www.apple.com/de/
logicstudio/, accessed 2008-07-23.

[7] Audacity. Free audio editing software. http://
audacity.sourceforge.net/, accessed 2008-
07-23.

[8] Avid. Interplay. http://www.avid.de/de/
products/media-asset-management.asp, ac-
cessed 2008-07-23.

[9] BSD. LN(1): link, ln – make links. BSD Gen-
eral Commands Manual, 2006.

[10] David Collett. MP3FS. http://mp3fs.
sourceforge.net/, accessed 2008-07-10.

[11] Copy-FS. A copy-on-write, versionned filesys-
tem. http://n0x.org/copyfs/, accessed 2008-
07-23.

[12] Digidesign. Pro Tools. http://www.
digidesign.com/, accessed 2008-07-23.

[13] Dokan. User-mode file system for Windows.
http://dokan-dev.net/en/, accessed 2008-
07-10.

[14] ELDOS. Call back file system. http://www.
eldos.com/cbfs/, accessed 2008-07-10.

[15] FUSE. Filesystem in userspace. http://fuse.
sourceforge.net/, accessed 2008-07-10.

[16] Gravity Apps. SearchLight. http://www.
gravityapps.com/searchlight/overview/,
accessed 2008-07-23.

[17] John Heidemann. Stackable design of file sys-
tems. Technical Report UCLA CSD-950032,
1995.

[18] Tom J. Killian. Processes as files. In Pro-
ceedings of USENIX Summer Conference, pages
203–207, 1984.

[19] Michael S. Lew, Nicu Sebe, Chabane Djeraba,
and Ramesh Jain. Content-based multime-
dia information retrieval: State of the art and
challenges. ACM Transactions on Multimedia
Computing, Communications, and Applications
(TOMCCAP), 2(1):1–19, 2006.

[20] MacFUSE. A user-space file system implemen-
tation mechanism for Mac OS X. http://code.
google.com/p/macfuse/, accessed 2008-07-10.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 9 of 10

http://developer.apple.com/documentation/Carbon/Reference/Alias_Manager/Reference/reference.html
http://developer.apple.com/documentation/Carbon/Reference/Alias_Manager/Reference/reference.html
http://developer.apple.com/documentation/Carbon/Reference/Alias_Manager/Reference/reference.html
http://developer.apple.com/documentation/Carbon/Reference/Alias_Manager/Reference/reference.html
http://developer.apple.com/macosx/spotlight.html
http://developer.apple.com/macosx/spotlight.html
http://developer.apple.com/macosx/spotlight.html
http://www.apple.com/de/macosx/features/300.html#automator
http://www.apple.com/de/macosx/features/300.html#automator
http://www.apple.com/de/finalcutserver/
http://www.apple.com/de/finalcutserver/
http://www.apple.com/de/logicstudio/
http://www.apple.com/de/logicstudio/
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://www.avid.de/de/products/media-asset-management.asp
http://www.avid.de/de/products/media-asset-management.asp
http://mp3fs.sourceforge.net/
http://mp3fs.sourceforge.net/
http://n0x.org/copyfs/
http://www.digidesign.com/
http://www.digidesign.com/
http://dokan-dev.net/en/
http://www.eldos.com/cbfs/
http://www.eldos.com/cbfs/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://www.gravityapps.com/searchlight/overview/
http://www.gravityapps.com/searchlight/overview/
http://code.google.com/p/macfuse/
http://code.google.com/p/macfuse/


Hlatky et al. File System Tricks

[21] Microsoft Developer Network. IShell-
Link::Resolve method. http://
msdn.microsoft.com/en-us/library/
bb774952(VS.85).aspx, accessed 2008-07-
10.

[22] Microsoft Developer Network. Symbolic
links. http://msdn.microsoft.com/en-us/
library/aa365680.aspx, accessed 2008-07-10.

[23] MusicMeshFS. Virtual file system to organize
music files using tags. http://code.google.
com/p/musicmeshfs/, accessed 2008-07-23.

[24] MySQLFS. FUSE filesystem using MySQL as a
storage. http://sourceforge.net/projects/
mysqlfs/, accessed 2008-07-23.

[25] OpenSolaris Community. ZFS. http:
//opensolaris.org/os/community/zfs/, ac-
cessed 2008-07-23.

[26] Mark Russinovich. Windows sysinternals.
http://technet.microsoft.com/de-de/
sysinternals/bb896768.aspx, accessed
2008-07-10.

[27] Samba. Opening Windows to a wider
world. http://us3.samba.org/samba/, ac-
cessed 2008-07-23.

[28] Sony. Sound Forge. http://www.
sonycreativesoftware.com/soundforge,
accessed 2008-07-23.

[29] Sony. Vegas Pro. http://www.
sonycreativesoftware.com/vegaspro,
accessed 2008-07-23.

[30] Studio Network Solutions. Postmap
Operating Environment. http://www.
studionetworksolutions.com/products/
product_detail.php?pi=7, accessed 2008-07-
23.

[31] TagsFS. Music library file system. https://
gna.org/projects/tagsfs, accessed 2008-07-
23.

[32] TwistedWave. TwistedFLAC. http:
//twistedwave.com/TwistedFLAC.html,
accessed 2008-07-10.

[33] un4seen developments. BASS Audio Library.
http://www.un4seen.com/, accessed 2008-07-
23.

[34] Universal FUSE. Project homepage. http://
ufuse.ikejisoft.com/, accessed 2008-07-10.

[35] Vishpat. YouTubeFS. http://code.google.
com/p/youtubefs/, accessed 2008-07-23.

[36] WaybackFS. User-level versioning file system
for Linux. http://wayback.sourceforge.
net/, accessed 2008-07-23.

[37] WinFUSE. Filesystems with .NET.
http://www.suchwerk.net/sodcms_FUSE_
for_WINDOWS.htm, 2008-07-10.

[38] WinFUSE. FileSystem in Userland Windows
port. http://code.google.com/p/winfuse/,
accessed 2008-07-10.

[39] ZFS on FUSE. ZFS filesystem for FUSE/Linux.
http://www.wizy.org/wiki/ZFS_on_FUSE,
accessed 2008-07-23.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 10 of 10

http://msdn.microsoft.com/en-us/library/bb774952(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb774952(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb774952(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365680.aspx
http://msdn.microsoft.com/en-us/library/aa365680.aspx
http://code.google.com/p/musicmeshfs/
http://code.google.com/p/musicmeshfs/
http://sourceforge.net/projects/mysqlfs/
http://sourceforge.net/projects/mysqlfs/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://technet.microsoft.com/de-de/sysinternals/bb896768.aspx
http://technet.microsoft.com/de-de/sysinternals/bb896768.aspx
http://us3.samba.org/samba/
http://www.sonycreativesoftware.com/soundforge
http://www.sonycreativesoftware.com/soundforge
http://www.sonycreativesoftware.com/vegaspro
http://www.sonycreativesoftware.com/vegaspro
http://www.studionetworksolutions.com/products/product_detail.php?pi=7
http://www.studionetworksolutions.com/products/product_detail.php?pi=7
http://www.studionetworksolutions.com/products/product_detail.php?pi=7
https://gna.org/projects/tagsfs
https://gna.org/projects/tagsfs
http://twistedwave.com/TwistedFLAC.html
http://twistedwave.com/TwistedFLAC.html
http://www.un4seen.com/
http://ufuse.ikejisoft.com/
http://ufuse.ikejisoft.com/
http://code.google.com/p/youtubefs/
http://code.google.com/p/youtubefs/
http://wayback.sourceforge.net/
http://wayback.sourceforge.net/
http://www.suchwerk.net/sodcms_FUSE_for_WINDOWS.htm
http://www.suchwerk.net/sodcms_FUSE_for_WINDOWS.htm
http://code.google.com/p/winfuse/
http://www.wizy.org/wiki/ZFS_on_FUSE

