
Audio Engineering Society

Convention Paper
Presented at the 125th Convention

2008 October 2–5 San Francisco, CA, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

SoundTorch: Quick Browsing
in Large Audio Collections

Sebastian Heise1, Michael Hlatky1, and Jörn Loviscach1

1Hochschule Bremen (University of Applied Sciences), 28199 Bremen, Germany

Correspondence should be addressed to Jörn Loviscach (joern.loviscach@hs-bremen.de)

ABSTRACT
Musicians, sound engineers, and foley artists face the challenge of finding appropriate sounds in vast col-
lections containing thousands of audio files. Imprecise naming and tagging forces users to review dozens of
files in order to pick the right sound. Acoustic matching is not necessarily helpful here as it needs a sound
exemplar to match with and may miss relevant files. Hence, we propose to combine acoustic content analysis
with accelerated auditioning: Audio files are automatically arranged in 2D by psychoacoustic similarity.
A user can shine a virtual flashlight onto this representation; all sounds in the light cone are played back
simultaneously, their position indicated through surround sound. User tests show that this method can
leverage the human brain’s capability to single out sounds from a spatial mixture and enhance browsing in
large collections of audio content.

1. INTRODUCTION
For at least the last two decades, the processes for
managing, browsing and auditioning sound samples
on a computer have remained the same. Audition-
ing mostly happens file by file, which consumes time
and kills creativity. Sounds are not easy to com-
pare because only one file is played back at a time,
and files from different folders cannot be triggered
in immediate sequence.

In theory, sound searches can be sped up if the au-
dio files possess meaningful names or are equipped
with tags. However, names and tags are hard to cre-
ate and maintain in a consistent state if the number
of audio files ranges in the thousands [7]. In ad-
dition, names and tags are not of great help when
the perfect crackling noise for a campfire stems from
an icebreaker ship. Content-based methods of Mu-
sic Information Retrieval (MIR) may come to the
rescue, in particular when combined with visualiza-



Heise et al. SoundTorch

tion [4]. MIR helps to classify sounds by similarity.
Currently, however, its reliability is not perfect so
that one has to individually audition dozens of files
and may still miss an interesting candidate. We pro-
pose a solution to this problem through combining
MIR methods with a novel user interface for quick
auditioning.

Our prototype represents audio files on a 2D screen
by dots on a dark background, see Figure 1. The
layout in 2D is based on methods from MIR, so that
acoustically similar sounds are placed next to each
other. To this end, Mel-Frequency Cepstral Coef-
ficients (MFCCs) [6] are computed for every audio
file; the files’ positions are laid out through a Self-
Organizing Map (SOM) [8]. This approach is proven
to produce meaningful arrangements of songs con-
cerning their genre [9, 10].

Fig. 1: The user can shine a virtual flashlight onto
a collection of sound files.

The proposed quick auditioning method leverages
the “Cocktail-Party Effect,” the human capability
for complex auditory scene analysis [2, 3]. Our sys-
tem places the listener at the center of a graphical
flashlight that illuminates the files to be auditioned.
The audio of the illuminated files is mapped spatially
to a user-defined loudspeaker setup. A computer
mouse or a Nintendo Wii Remote steers the light
cone emerging from the virtual torch over the 2D
file representation. The illumination triggers the si-
multaneous playback of all sounds it highlights. The
playback of every file repeats until the light beam is
moved out of range. The auditory separation of the

sounds is based on the mapping to a multi-channel
loudspeaker system and is supported further by the
fast interaction: The sound mix changes when mov-
ing the torch, so it is easier to locate single streams.

The cone’s diameter and the zoom factor of the dis-
play are easily adjustable. This allows quick transi-
tions between an overview of thousands of files and
a close-up of dozens. There is no hard switching
between files under audition but rather a continu-
ous, glitch-free transition from inaudible to fully au-
dible as the flashlight is moved around. The dots
that represent the currently active files within the
spotlight of the torch pulsate to act like VU meters.
The visual output is mostly handled using the pro-
grammable features of current graphics cards.

Methods of Music Information Retrieval have mostly
been applied to complete songs, not to single sounds.
However, the Freesound Project (http://www.
freesound.org/) employs user-provided tagging;
AllThatSounds.net (http://www.allthatsounds.
net/) additionally makes use of acoustic feature
analysis. None of both projects is concerned with
advanced visualization.

In concurrent work, Streich and Ong [13] visualize
music loops in a 2D arrangement according to
their similarity. The—optionally synchronized—
playback can be switched on and off per loop. Our
user interface also resembles StockSynth (http:
//www.dontcrack.com/freeware/downloads.php/
id/2279/software/StockSynth/), a SuperCollider
patch, which is intended for real-time performances
and neither offers automatic layout nor more
than stereo sound output. In Schmandt’s “Audio
Hallway” [12], short news samples from a radio
network were grouped together in virtual rooms
based on metadata. The user could navigate
through a hallway hearing short clippings from the
clusters and could than decide to enter a room. An
additional text stream was used to do the grouping
by text analysis. Dachselt and Frisch [5] dealt with
the problem of visualizing a music collection by
presenting different zoom levels. With its prominent
use of zooming, SoundTorch, too, can be considered
a specific case of a Zoomable User Interface [1].

This paper is structured as follows: Section 2
presents the methods used to lay out the sound files
in a two-dimensional field. Section 3 covers the level

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 2 of 8

http://www.freesound.org/
http://www.freesound.org/
http://www.allthatsounds.net/
http://www.allthatsounds.net/
http://www.dontcrack.com/freeware/downloads.php/id/2279/software/StockSynth/
http://www.dontcrack.com/freeware/downloads.php/id/2279/software/StockSynth/
http://www.dontcrack.com/freeware/downloads.php/id/2279/software/StockSynth/


Heise et al. SoundTorch

control employed to fade the files’ content in and
out as well as the panning method. The graphical
and tangible user interface is described in Section 4.
The implementation and the technical performance
of our prototype are detailed in Section 5. We report
results of an evaluation with test users in Section 6
and conclude the paper with Section 7.

2. 2D LAYOUT
Mörchen [9] provides a detailed description of map-
ping music genres with a self-organizing map us-
ing high-dimensional feature vectors extracted from
sound files. Not dealing with complete music files
but with comparatively simple sound effects, we de-
cided to deal with a limited set of acoustic features.
In a preprocessing step we extract 13 MFCCs for
every frame (46 ms, 50 % overlap) of every sound
file in the training set, which encompasses around
3000 sounds. Regions of the audio files whose level
is below an adjustable threshold are ignored. Since
most sounds effects possess a relatively stable tim-
bre, we elected to further condense this number, for
which reason we determined the centroid of a sound’s
MFCC cloud, similar to [9]. The median for every
sound is then taken to train the SOM with differ-
ent distance functions. We compared Euclidean dis-
tance, Mahalanobis distance, and the scalar product
of the normalized vectors.

To be able to compare different maps, we refrained
from the typical random initialization of the SOM.
Instead, we initialize it with smooth gradients. To
this end, the 13 elements of the MFCC vector are
divided into three groups: 0. . . 4, 5. . . 8, 9. . . 13. For
every cell (x, y) ∈ [0,W ] × [0, H] in the SOM’s lat-
tice, the components of the first group are filled
with cos(πx/W ), those of the second group with
cos(πx/W ) cos(πy/H), and those of the third group
with cos(πy/H). This very roughly amounts to plac-
ing noisy and dull sounds at large x and small y;
toward small x, the sound gets more tonal; toward
large y, pitch goes up. Figure 2 shows the train-
ing result. As Figure 3 shows, the cosine distance
function tends to work best.

3. FADING, BLENDING, AND PANNING
The amount of light that shines onto a sound ob-
ject on the surface determines its volume in the mix.
The corresponding “illumination” levels of the sound
files are computed using an invisible rendering pass

Fig. 2: The used SOM with feature vectors mapped
to color.

on the graphics chip, which proved to be a major
speedup in the computation. As long as a sound file
is illuminated, it keeps playing back. If the flashlight
moves out of range, the playback position for that
specific sound is kept until it is illuminated again.
During a preprocessing step, larger regions of silence
can be eliminated and overly short sound files can be
extended by silence, so as to create a more consistent
sonic image.

When the light cone moves over the surface, every
sound file is smoothly faded in and out. Audio levels
of individual recordings may differ drastically and
the number of files playing may range from a sin-
gle one to several hundreds. Hence, strong dynamic
compression is employed. Our multichannel envi-
ronment is equipped for 2D spatialization. In the
software prototype, the user can adjust the number
and the positions of loudspeakers along the circum-
ference of a circle to mimic the actual listening en-
vironment. This circle is virtually mounted to the
light cone and moves with the cone’s position, see
Figure 4.

Having to deal with virtual sound sources that may
appear in front of the loudspeakers, we cannot fully
employ Pulkki’s vector-based panning method [11].

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 3 of 8



Heise et al. SoundTorch

Sword Fight

Ocean Water

Rain and Thunder

Sword Fight

Ocean Water

Rain and Thunder

Sword Fight

Ocean Water

Rain and Thunder

Mahalanobis

Euclidean

Cosine

Fig. 3: Distribution of sound files using different
distance functions. Note that one thunderstorm
sound is misplaced in all three approaches.

Fig. 4: The spatialization simulates that the user
sits at the center of the light cone.

In particular, we have to avoid quick switches be-
tween loudspeaker pairs when a sound source gets
close to the listener’s position. Hence, we blend into
a uniform distribution of the sound onto all loud-
speakers, when this distance becomes small.

The level-based panning is enhanced by a delay that
depends on the relative positions of the virtual loud-
speakers and the sound source. The computation is
based on the projection along the line that connects
the listener’s head with the sound source, see Fig-
ure 5. This projection yields a delay factor, which
can be scaled according to the user’s wishes. Since
we are dealing with sound playback, the delay can
be realized through offsetting the playback position,
with no specific delay lines involved.

4. INTERACTION AND GRAPHICS
The position of the flashlight’s cone can be con-
trolled in three different ways: first, through the
computer’s mouse; second, through the keys W–
A–S–D, like in a first-person shooter game; third,
through the infrared sensor of the Nintendo Wii Re-
mote. The latter also mimics the handling of a flash-
light very closely; its four cursor keys can be used to
invoke sideway motion.

There is no rotational motion so that the user always
looks onto the surface from a right angle; in addition,
the top of the computer screen is always mapped to
the loudspeaker in front of the user. The zoom level

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 4 of 8



Heise et al. SoundTorch

Early Playback
Late Playback

Sound Source

Fig. 5: The delay is computed with the help of the
axial distance to the sound source.

can be adjusted with the scroll wheel of the mouse
or by changing the distance between the Wii Remote
and the screen.

If it is not used for zooming, one can apply the Wii
Remote controller with one single beacon of infrared
light, as only a 2D position needs to be determined.
To measure forward and backward motion of the
controller, at least two beacons are required. The
field of view of the Wii Remote controller’s infrared
sensor is rather narrow, as it is intended to be used
on a couch in front of a TV screen. Thus, this setup
is not ideal for desktop computing. Another option
for a user interface is to employ the Wii Remote’s
accelerometer to steer the position by tilting the con-
troller; this is independent of additional beacons and
hence works well on the desktop.

All sounds within the light cone are displayed as dots
whose size and color pulsate according to the level.
This visual representation enhances the integration
of vision and sound: The pulsation, which resembles
a VU meter, makes it more intuitive to link the dots
on the screen to the spatialized audio signals than
just the spatial distribution alone. If sounds out-
side the light cone would not be rendered visually,
the user’s orientation would suffer. Hence, they are
drawn “ghosted”: as thin rings of a fixed size.

5. IMPLEMENTATION
The prototype’s implementation employs several
data collections: first, a list with references to sound
objects, the active—i. e. illuminated—ones being

swapped to the beginning for maximum compact-
ness; second, a list with n× 1 mix matrices and de-
lay offsets to control the distribution of every (mono)
sound file onto n loudspeakers; third, a vertex buffer
on the graphics card that stores the screen position
and the current VU level for every sound object;
fourth, a texture on the graphics card that contains
a list of the coordinates of the sound objects on the
SOM field, calculated on initialization through best
matches with the SOM.

Even though the prototype works in 2D, it employs
3D coordinates internally. This requires no addi-
tional computational effort since the projection is
done by the GPU, which is highly optimized for 3D
operations. Due to the 3D coordinates it would be
easy to switch to a 3D SOM mapping and treat the
sound collection as a universe with clusters that ap-
pear as sound galaxies.

The process to compute the sound control data runs
as follows, see Figure 6: First, the software checks if
the input from the input control device (mouse, key-
board, Wii Remote controller) has changed. If not,
the control data do not need to change and the next
steps can be leaped over for this cycle. Then, the list
of sounds is updated based on the currently stored
illumination level of the sounds. Sounds whose state
changed to active are swapped with the first inactive
ones; sounds with zero output level are pushed to the
list’s tail by swapping them with the last active one.
The mix matrix is updated for every active sound.
Next, an invisible rendering step uses the texture
containing the SOM coordinates of the sound ob-
jects to compute the screen positions of the sound
objects and the amount of light they receive. This
data is then used to update all points in the vertex
buffer with new 2D coordinates. The sound card’s
mixing loop, which runs in a parallel thread, hands
over level data that are fetched now and stored in
the vertex buffer. Finally, the graphics card draws
the new image frame.

The dots representing the sounds are rendered as
squares sized 50×50 pixels, which are overlaid trans-
parently. A pixel shader computes the distance of a
pixel from the center. This distance is used to either
render a ring (inactive state) or to produce a disk
of adjustable size (active state) in the pixel shader.
The remaining pixels are left transparent.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 5 of 8



Heise et al. SoundTorch

Draw Sound Icons

Update List of Active Sounds

Project Points

Update Mix Matrix Fetch Input

Draw Background

Fig. 6: The update process for the sound control
data runs partially on the CPU and partially on the
GPU.

Audio streams are read, decoded and buffered asyn-
chronously ensuring that enough computing power
remains for audio mixing and graphics calculation.
On a standard notebook computer, the prototype
can seamlessly play back 100 audio files in paral-
lel. The number of visible files is virtually unlimited,
since only the “illuminated” ones are processed. The
audio output loop only needs to process the active
sounds. The initial parts of all sound files on the sur-
face are buffered in main memory to have all samples
at hand without delay.

The prototype has been implemented in C# and
HLSL on the .NET platform using Microsoft XNA
Game Studio 2.0. Our .NET wrapper for audio card
drivers conforming to Steinberg’s ASIO interface en-
sures high-performance multichannel output. If no
ASIO device is available, the prototype falls back to
the Microsoft Windows Audio Session API (WAS-
API), which still provides a short-latency playback.
For decoding the different types of audio files we
employed a proprietary .NET wrapper around the
BASS audio library (http://www.un4seen.com/).

We tried out different collections of sound effects
databases from http://www.sound-ideas.com/, in
total around 5000 sound files, amounting to nine gi-
gabytes of MP3 files. Tests were conducted on a
standard 1.8 GHz Intel Centrino Duo notebook with
an NVidia GeForce 7400 Go graphics and 2 GB main
memory. This computer can handle the complete
database while still keeping a speed of the drawing
loop of about 60 Hz. The pre-buffered audio data
consume about 650 MB of memory. The loudspeaker

setup employed in the tests was a regular arrange-
ment of five near-field studio monitors.

As described before, only the active sounds are pro-
cessed, which helps to keep the system load manage-
able. It is reasonable to limit the number of active
sound files to a 100 or even less because distinguish-
ing sounds in such a mixture becomes impossible.
During testing, we found that one performance prob-
lem could arise due to the number of opened files.
Opening several thousand files during the initializa-
tion phase places a huge burden on the operating
system. It may be advisable to first create a sin-
gle combined file containing all audio samples in se-
quence.

6. EVALUATION
We conducted a think-aloud user test with 15 sub-
jects (6 female, 9 male; age 23 to 43, median 27),
all of whom are computer-literate or sound pro-
fessionals. Every user had to tackle three prob-
lems both with SoundTorch and with the list-
based auditioning function of Sony Vegas 8. We
confronted the subjects with different sound sets
of 100 files each, taken from Sound Ideas’s “The
General” Series 6000 (http://sound-ideas.com/
sfxmenu-6000.html), which covers a broad variety
of sound effects for movie production. A different
set of sounds was selected for every experiment; ev-
ery user worked with the same set for that specific
experiment. The entries of the lists, however, were
shuffled randomly for every user. The file names
where changed to numbers so that it was not possi-
ble to draw a conclusion from them.

6.1. Task 1: Gain an Overview
After an introduction to the interface of Sound-
Torch, the first task was to explore an unknown
set of sound files and gain an overview of its con-
tent. We asked the participants to mentally form an
appropriate grouping of the sounds. This task was
mainly used to familiarize the users with the inter-
face. Nonetheless, already in this test it turned out
that the task was easier to solve with SoundTorch:
12 of the 15 subjects identified the (relatively ob-
vious) classes of sounds; only one participant suc-
ceeded with the list-based interface.

6.2. Task 2: Search for a Given Sound
The second task was to find given sounds, namely
a “blib” and a “ding dong” using SoundTorch and

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 6 of 8

http://www.un4seen.com/
http://www.sound-ideas.com/
http://sound-ideas.com/sfxmenu-6000.html
http://sound-ideas.com/sfxmenu-6000.html


Heise et al. SoundTorch

the list-based auditioning tool. If a user forgot the
pattern he or she had the possibility to listen to the
pattern whenever needed. It turned out that this
task was solved extremely quickly with SoundTorch,
see Figure 7. The high largest value was due to one
subject being confused by the mapping, which we
consider a training issue. 14 of the 15 participants
could solve this task with SoundTorch, only 8 par-
ticipants succeeded with the list-based interface.

SoundTorch

Time

ListBased
Auditioning

0 s 120 s 240 s180 s60 s 300 s

Fig. 7: SoundTorch drastically speeds up the search
for a given sound.

6.3. Task 3: Search for an Unknown Sound
Here, the subjects had to search for audio sam-
ples that can be used to produce a sound that does
not exist in reality. First, the participants were in-
structed to come up with ideas to produce a dinosaur
sound from 100 samples that included animal sounds
from pigs, sheep, and cows, but also some machine
and nature sounds (total playing time: 130 min-
utes). Second, they had to find material for an alarm
sound in an extraterrestrial spacecraft, for which
we provided another set of 100 sounds: synthesized
noises, servo motors, noises from sport events, and
war sounds (total playing time: 70 minutes).

It turned out that with Sound Torch all users re-
ported that they enjoyed exploring the set and began
to weigh different sounds against each other. In par-
ticular, the subjects spend three minutes on average
in browsing though the different sounds. All of them
were satisfied with the result they found. With the
list-based auditioning tool, most users claimed to be
bored by “having to listen to all that stuff” and fin-
ished the task after one minute. Here, only 10 of the
15 subjects came up with a result that pleased them;
this result was always the first one they encountered
that fulfilled their needs.

6.4. Overall Observations
In our interviews with the candidates, it turned out
that working with SoundTorch is much more pleas-

ing than stepping through a list. However, users
with no professional audio expertise reported that
they felt overtaxed with the focused listening to
many simultaneous sounds for several minutes. On
top of that, the non-professionals hesitated to en-
gage the full power of the system by using a large
light cone to play back a dozen of sounds at the same
time.

Further experimentation with the user interface has
shown that attaching names to representational dots
is counterproductive since the user tends to focus on
reading the labels. In addition, labels or tags may
be misleading rather than helpful.

7. CONCLUSION AND OUTLOOK
This work demonstrated a novel approach to explore
sound databases. It produces results quicker than
stepping through a linear list of files for auditioning.
In addition, it entertains its users and thus promotes
serendipity.

The system is based on surround sound, but may
also be used with stereo sound reproduction. Even
though the fall-back solution for stereo systems is
already promising, the use of headphones could be
enhanced by using HRTFs for spatialization. This
could mean to port more parts of the audio process-
ing to the GPU. One can try to use a 3D mapping
to fly through galaxies of sounds instead of walking
through clusters of sounds on a surface. The under-
lying engines already provide the necessary function-
ality. An adjacency map for the sound icons could
help limiting all updates to the corresponding neigh-
borhood and thus enhance performance.

The mapping algorithm still presents issues: Cur-
rently our mapping only covers the use of MFCCs.
Several other acoustic features such as those defined
in the MPEG-7 standard can be used alone or in
combination with our technique. In particular, the
temporal development of a sound is currently ig-
nored. Finally, one could optimize the distance func-
tion for the self-organizing map and the SoundTorch
projection in a training phase.

Future work may also address new zooming interac-
tions. For instance, in the spirit of “liquid brows-
ing” [14] one could create rather a sound lens than
a sound torch.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 7 of 8



Heise et al. SoundTorch

8. REFERENCES

[1] B. Bederson and J. Meyer. Implementing a
zooming user interface: experience building
Pad++. Softw. Pract. Exper., 28(10):1101–
1135, 1998.

[2] A. S. Bregman. Auditory Scene Analysis. MIT
Press, Cambridge, Massachussetts, 1990.

[3] E. Cherry. Some experiments in the recognition
of speech, with one and two ears. J. Acoustical
Soc. of America, 25:975–979, 1953.

[4] M. Cooper, J. Foote, E. Pampalk, and
G. Tzanetakis. Visualization in audio-based
music information retrieval. Comput. Music J.,
30(2):42–62, 2006.

[5] R. Dachselt and M. Frisch. Mambo: a facet-
based zoomable music browser. In MUM ’07:
Proceedings of the International Conference on
Mobile and Ubiquitous Multimedia, pages 110–
117, 2007.

[6] J. Foote. Content-based retrieval of music and
audio. In C.-C. J. Kuo, editor, Multimedia Stor-
age and Archiving Systems II, Proceedings of
SPIE, pages 138–147, 1997.

[7] J. Foote. An overview of audio information re-
trieval. Multimedia Systems, 7(1):2–11, 1999.

[8] T. Kohonen. Self-organizing maps. Springer-
Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[9] F. Mörchen. Modelling timbre distance with
temporal statistics from polyphonic music.
IEEE Transactions on Speech and Audio Pro-
cessing, 14(1):81–90, 2006.

[10] E. Pampalk, A. Rauber, and D. Merkl.
Content-based organization and visualization of
music archives. In MULTIMEDIA ’02: Pro-
ceedings of ACM International Conference on
Multimedia, pages 570–579, 2002.

[11] V. Pulkki. Virtual sound source positioning
using vector base amplitude panning. J. Au-
dio Eng. Soc., 45(6):456–466, 1997.

[12] C. Schmandt. Audio hallway: a virtual acoustic
environment for browsing. In UIST ’98: Pro-
ceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 163–170,
1998.

[13] S. Streich and B. S. Ong. A music loop explorer
system. Appears in: ICMC ’08: Proceedings of
the International Computer Music Conference,
2008.

[14] C. Waldeck and D. Balfanz. Mobile liquid 2D
scatter space (ML2DSS). In IV ’04: Proceed-
ings of the Information Visualization Confer-
ence, pages 494–498, 2004.

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5

Page 8 of 8


